MnII—A fascinating oxidation catalyst: Mechanistic insight into the catalyzed oxidative degradation of organic dyes by H$_2$O$_2$

Erika Embera, Hanaa Asaad Gazzaza,b, Sabine Rothbarta, Ralph Puchtaa,c, Rudi van Eldika,*

aInorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, Egerlandstr. 1, 91058 Erlangen, Germany
bDepartment of Chemistry, King Abdul-Aziz University, Jeddah, Saudi Arabia
cComputer Chemistry Center, University of Erlangen-Nürnberg, Nügelsbachstr. 25, 91052 Erlangen, Germany

ABSTRACT

The use of simple MnII ions as efficient catalyst precursors for the oxidation of different highly stable organic dyes using H$_2$O$_2$ as an environmentally benign oxidant under mild reaction conditions, is presented. The role of a series of aromatic dyes in the in situ formation and stabilisation of the active catalyst was studied in detail using stopped-flow techniques and UV–Vis detection. DFT calculations were employed to predict the nature of the role of the substrate in the stabilisation of highly reactive MnII intermediates. Furthermore, low-temperature EPR measurements were performed in order to characterize the in situ formed catalytically active MnIV=O intermediate responsible for the fast and versatile oxidation of organic dyes in aqueous solution.