Probing infinity in bounded two-dimensional electrostatic systems

By: Abutalib, M (Abutalib, M.)[1]; Batle, J (Batle, J.)[2]; Ooi, CHR (Ooi, C. H. Raymond)[3]

View ResearcherID and ORCID

CHAOS
Volume: 26 Issue: 7
Article Number: 073113
DOI: 10.1063/1.4959138
Published: JUL 2016
View Journal Impact

Abstract
The total electrostatic energy of systems of identical particles of equal charge is studied in configurations bounded in space, but divergent in the number of charges. This approach shall guide us to unveil a non-linear, functional form specifying the divergent nature of system energy. We consider fractals to be physical entities, with charges located in their vertices or nodes. This description is interesting since features, such as the corresponding fractal dimension, can characterize the total energy EN. Finally, at local length scales, we describe how energy diverges at charge accumulation points in the fractal, that is, almost everywhere by definition. Published by AIP Publishing.

Keywords
KeyWords Plus: WIGNER CRYSTAL; ELECTRONS; CHARGES

Author Information
Reprint Address: Ooi, CHR (reprint author)
Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia.

Addresses:
[2] Univ Illes Balears, Dept Fis, Palma De Mallorca 07122, Balearic Island, Spain
[3] Univ Malaya, Dept Phys, Kuala Lumpur 50603, Malaysia

E-mail Addresses: jbv276@uib.es

Funding
Funding Agency: High Impact Research MoE Grant from Ministry of Education Malaysia
Grant Number: UM.C/625/1/HIR/MoE/CHAN/04

Publisher
AMER INST PHYSICS, 1305 WALT WHITMAN RD, STE 300, MELVILLE, NY 11747-4501 USA

Categories / Classification
Research Areas: Mathematics; Physics
Web of Science Categories: Mathematics, Applied; Physics, Mathematical

Document Information
Document Type: Article
Language: English
Accession Number: WOS:000382404700013